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Abstract

Prescribed burning is a major source of a fine particular matter, especially in the southeastern 

United States, and quantifying emissions from burning operations accurately is an integral part 

of ascertaining air quality impacts. For instance, a critical factor in calculating fire emissions 

is identifying fire activity information (e.g., location, date/time, fire type, and area burned) and 

prior estimations of prescribed fire activity used for calculating emissions have either used burn 

permit records or satellite-based remote sensing products. While burn permit records kept by state 

agencies are a reliable source, they are not always available or readily accessible. Satellite-based 

remote sensing products are currently used to fill the data gaps, especially in regional studies; 

however, they cannot differentiate prescribed burns from the other types of fires. In this study, we 

developed novel algorithms to distinguish prescribed burns from wildfires and agricultural burns 

in a satellite-derived product, Fire INventory from NCAR (FINN). We matched and compared 

the burned areas from permit records and FINN at various spatial scales: individual fire level, 

4 km grid level, and state level. The methods developed in this study are readily usable for 

differentiating burn type, matching and comparing the burned area between two datasets at various 

resolutions, and estimating prescribed burn emissions. The results showed that burned areas from 

permits and FINN have a weak correlation at the individual fire level, while the correlation is 
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much higher for the 4 km grid and state levels. Since matching at the 4 km grid level showed a 

relatively higher correlation and chemical transport models typically use grid-based emissions, we 

used the linear regression relationship between FINN and permit burned areas at the grid level to 

adjust FINN burned areas. This adjustment resulted in a reduction in FINN-burned areas by 34%. 

The adjusted burned area was then used as input to the BlueSky Smoke Modeling Framework 

to provide long-term, three-dimensional prescribed burning emissions for the southeastern United 

States. In this study, we also compared emissions from different methods (FINN or BlueSky) 

and different data sources (adjusted FINN or permits) to evaluate uncertainties of our emission 

estimation. The comparison results showed the impacts of the burned area, method, and data 

source on prescribed burning emission estimations.
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1. Introduction

The burned area from wildland fires in the United States has increased in recent decades 

[1], with the frequency and severity of wildland fires continuing to grow under a changing 

climate [2–4]. Moreover, the greenhouse gases emitted from fires have positive feedback 

on global warming, leading to more pronounced and persistent climate-related impacts [5]. 

Prescribed burning, which is a type of planned burning operation and falls under the broader 

definition of wildland fires, is introduced to recreate the natural fire regimes for a healthy 

ecosystem and mitigate the risk of severe wildfires by reducing hazardous fuels. Given that 

burns are planned and conducted by experts and emissions are typically lower compared 

to wildfires [6], prescribed burning impacts may be less hazardous. However, the effects of 

prescribed burning are particularly felt in the southeastern United States, where prescribed 

burning has been traditionally used for land management in both private and public lands 

[7,8].

Emissions from fires are typically estimated using burned area, fuel bed information 

(e.g., type and amount of fuels), the efficiency of combustion, and emission factors [9]. 

Meteorological conditions such as moisture can also affect fire emissions [10–12]. The 

information used to estimate fire emissions can be obtained from either ground-based fire 

datasets or remote sensing techniques. Since ground-based fire datasets are not provided 

in all locations, remote sensing techniques are typically used to provide fire information 

for global or regional fire emission products. Based on remote sensing technology, several 

satellite-derived products are employed to estimate emissions from wildland fires. The 

Blended Polar Geo Biomass Burning Emissions Product (Blended-BBEP) [13], Global 

Fire Emissions Database (GFED4s) [14], and Fire INventory from NCAR (FINN) [15,16] 

use fire radiative power (FRP), which reflects the rate of thermal energy released from 

fires, to estimate burned area. The fire emissions are then derived from the estimated 

burned area. Products such as the Blended Global Biomass Burning Emissions Product 

version 3 (GBBEPx v3) [17] directly estimate the emission from fire radiative energy 

(FRE), which measures the total amount of energy released during biomass combustion 
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episodes. The FRE is expected to have a linear relationship with fuel consumption [18]. 

Satellite-derived products provide historical and real-time global fire emission estimates, 

though cloud cover or resolution of the satellite imagery leads to uncertainty. Prescribed 

burning, which is typically smaller in size and is designed to burn at a low intensity and/or 

as an understory burn, is often missed by satellites [7]. Apart from satellite-derived products, 

burn permit records provide prescribed fire information. Prescribed burning permits report 

the burned area, location, and timing of the prescribed burning, and this information can 

be used for emission estimation. Since the burned areas of fires are crucial in emission 

estimation for permits or some satellite-derived products, comparisons between the burned 

area from prescribed burning permits and satellite-derived products can inform the degree 

of uncertainty of both methods. Koplitz et al. [19] compared the annual total burned area 

from the National Interagency Fire Center (NIFC), which is a ground-based record, with 

different satellite products in different regions of the United States. The results indicate that 

burned areas from different products in the northeastern and northern United States have 

a high correlation, while the southeastern and southern United States have discrepancies 

due to the uncertainty in the burned area from small fires. Zeng et al. [20] compared 

monthly burned area from a bottom-up database VISTA with Terra MODIS at the state 

level, reporting correlation coefficients (R2) of 0.57 and 0.52, respectively, for all fire 

types and prescribed burning, the latter of which is not separated from other fire types 

in MODIS. Huang et al. [21] compared the actual burned area, which was obtained by 

phone call surveys of land managers and prescribed burn contractors, with burned areas 

from permits in Georgia, and found a high correlation (R2 > 0.64) between the two. The 

study also compared burned areas from permits, Blended-BBEP, and GFED4s in Georgia 

and Florida at a relatively coarse resolution (state-based or county-based). The correlation 

between satellite-derived and permit-reported burned areas is relatively low compared to the 

correlation between surveyed land and permits provided to the burned area. To enhance 

the accuracy of emissions estimation and burned area comparisons, it is important to 

differentiate between burn types. However, this is often not possible with satellite data 

as fires are typically detected by thermal energy, which makes it difficult to distinguish 

between prescribed burns and wildfires. Despite this, some recent studies and emission 

products have made progress in differentiating burn types. For instance, CFIRE [22] used 

a combination of remote sensing data and permit records to provide burn-type information, 

allowing for separate calculations of emissions based on different types of wildland fires. 

McClure [23] employed a spatiotemporal clustering algorithm to estimate the growth pattern 

and lasting duration of wildfires, suggesting that it is possible to separate long-term fires 

from prescribed burns. In this work, we differentiate prescribed burns from wildland fires in 

FINN and compare the daily burned areas of prescribed burns from FINN to permits under 

different spatial resolutions.

The ultimate goal of the research is to generate three-dimensional prescribed burning 

emissions for chemical transport modeling. The study includes three parts. In the first 

part, we developed a method to identify fire types by differentiating agricultural burning, 

wildfires, and prescribed burning in FINN data. In the second part, we compared the 

burned area for prescribed burning from FINN and permits by developing and applying 

novel algorithms to match records from these two sources. A linear regression model was 
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employed to capture the relationship between the burned area from FINN and permits and 

adjust the burned area of prescribed burning from FINN. In the third part, we estimated 

the magnitude and vertical structure of emissions based on the adjusted burned area and 

BlueSky Smoke Modeling Framework [24]. We compared the emissions magnitudes from 

different methods (FINN and BlueSky) and from different data sources (adjusted FINN and 

permits) to evaluate and understand the uncertainties in prescribed fire emissions. Then, we 

used a plume rise model incorporated in BlueSky to generate vertical emission profiles, 

which we combined with emission magnitudes to obtain three-dimensional prescribed 

burning emissions. Our results and the following discussion highlight the various challenges 

associated with obtaining fire activity information suitable for estimating prescribed burning 

emissions.

2. Materials and Methods

2.1. State-Prescribed Burning Permit Records

Prescribed burning permits, which contain some of the fire activity information needed for 

fire emission estimates, were obtained from forestry agencies in Florida [25], South Carolina 

[26], and Georgia [27]. Georgia permit data covered 2015–2020. Florida and South Carolina 

permit data covered 2013–2020. Permit records in Florida and South Carolina provided 

detailed information on prescribed burns including the latitude and longitude of prescribed 

burn locations, burned area, and start time of prescribed burning, which were used in the 

following analysis. The data had missing values and wrong locations due to human error, so 

we removed the permits for which burned area was invalid (zero or missing), or the location 

was out of the state boundary (less than 1.0%). For Georgia, the latitude and longitude 

of prescribed burning were provided for a small portion of the permits. Most locations of 

burns were provided by address. We conducted address geocoding using Google Maps [28] 

for the permits that did not have latitude or longitude. A total of 4.6% of the addresses of 

the permits could not be matched via geocoding since the descriptions were ambiguous or 

erroneous; therefore, they were removed.

2.2. Fire INventory from NCAR (FINN)

Satellite-derived data is from FINN version 2.5 [15,16] in our study. FINN version 2.5 

employed a spatial clustering algorithm to merge detected active fires since different active 

fires from satellites can correspond to a single fire event. Additionally, the clustering 

algorithm is utilized to combine fire detections from VIIRS and MODIS. FINN utilizes 

the combined outputs to estimate the burned area [16]. Since VIIRS has a higher resolution 

(375 m) than MODIS (1 km), FINN version 2.5 can detect fires with smaller burned areas 

[29]. This is particularly important for estimating emissions from prescribed burns, which 

are typical for low intensity and/or occur as understory burns. In this study, we extract 

all wildland fires from FINN version 2.5 that were detected in the southeastern United 

States (as defined in Figure S25) from 2013 to 2020. The burned area of prescribed fires 

is separated by a burn-type differentiation algorithm and compared with the burned area 

reported by the permits.
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2.3. BlueSky Smoke Modeling Framework

The BlueSky Smoke Modeling Framework [24] provides multiple modeling options to 

estimate fuel type, fuel load, fuel moisture, fuel consumption, emissions, and smoke height. 

In this study, we employ BlueSky to estimate emissions and generate three-dimensional 

emission data for chemical transport modeling. North American Mesoscale Forecast System 

(NAM) 12 km [30] data is used to provide meteorological conditions for running BlueSky. 

The Weather Research and Forecasting Model (WRF) [31], with a 12 km resolution, 

provides meteorological conditions for the dates when NAM is missing. For BlueSky 

simulations, the 1 km Fuel Characteristic Classification System (FCCS) [32] provides 

detailed descriptions of the fuel beds; the National Fire Danger Rating System (NFDRS) 

[33] estimates fuel moisture (which affects fuel consumption); the CONSUME model 

[34] and Prichard–O’Neill’s emission factors [35] are used to calculate consumption and 

emissions; and the Fire Emission Production Simulator (FEPS) with Briggs plume top 

behaviors [36] estimates the vertical structure of emissions. Neither prescribed burn permits 

nor FINN provides a complete start hour or end hour of fires, so we assume that prescribed 

burning starts at 11 am local time and ends before 6 pm local time since prescribed burning 

is typically executed during the daytime, and there is a lag between when a fire crew starts 

work and the burn begins. The duration of prescribed burning is estimated based on the 

burned area (Table S1).

3. Methods

3.1. Burn-Type Differentiation

3.1.1. Agricultural Burning Identification—Agricultural burning includes planting 

preparation burning, crop residue burning, and stubble burning. Fuel load and emission 

factors vary for different crop residues [37]. Agricultural burning has different emission 

patterns than prescribed burning due to the differences in fuel type, fuel load, timing, 

and frequency, so it is important to differentiate agricultural burns from prescribed burns. 

Georgia does not provide detailed burning purposes in its permit records, and Florida 

does not have burn type data for 2017 and 2020. Satellite-derived FINN data does not 

differentiate burn types. To identify agricultural burns, we utilize the National Land Cover 

Database (NLCD), which has a 30 m resolution and is updated every 2 to 3 years [38]. 

We use 2013, 2016, and 2019 NLCD data to provide the land cover type of fires for their 

following years (e.g., 2013 for 2013–2015). For each fire, we assume a square shape with 

the same area as the burned area. The dominant land cover type in the square is assumed to 

be the land cover type for the fire. For fires that happened in areas classified as agriculture, 

we use agricultural burn estimation. Fires in open water or barren land in FINN or permits 

are removed as they are likely the wrong coordinates in FINN or permit records.

3.1.2. Wildfire Detection Algorithm—FINN data includes all fires detected by 

MODIS and VIIRS satellites, both for wildfires and prescribed, while permits are only 

for prescribed burns. Therefore, matching FINN data with permit data requires the removal 

of wildfires from FINN. In this research, we focus on detecting larger wildfires. Prescribed 

burns typically start and end on the same day, while wildfires can last multiple days, so we 

assume the fires that have more than a one-day duration are wildfires. The duration of the 
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fires can be calculated by temporally tracking each fire in FINN. In other words, if FINN 

detects fires in the same region (the distance between detected fires in the region is less than 

the selected clustering distance) for consecutive days, the algorithm will mark all fires in 

that region during the period as wildfires. Since wildfires can also spread over long distances 

in one day, FINN may identify a wildfire as several fires. This segregation problem could 

lead to underestimations of the size of wildfires if we just track the wildfires temporally, so 

a spatial clustering algorithm is applied to cluster FINN fire records that are close to each 

other on the same day (Algorithm S1). In this spatial and temporal clustering algorithm, 

we use 1000 m as the spatial clustering distance and 800 m as the temporal clustering 

distance for clustering the different FINN records into a wildfire based using the elbow 

method [39]. The elbow method is widely used to determine the optimal number of clusters 

in a clustering algorithm, and the elbow point of the clustering parameters (spatial and/or 

temporal clustering distance) versus the number of clusters plot represents a suitable balance 

between clustering accuracy and model complexity. As a result, we have selected the elbow 

point as the optimal parameter setting for our clustering algorithm. It is recognized that 

wildfires can happen under similar meteorological conditions as prescribed burns, and some 

wildfires are small and extinguished in a short time, leading to potential misclassification.

3.2. Matching FINN-Prescribed Burning Records with Permits

FINN is a satellite-derived product and estimates the burned area with the help of fire 

radiative power detected from MODIS and VIIRS. The approach has several limitations due 

to a lack of information on combustion completeness or fuel loading [40]. Additionally, 

cloud cover and thick smoke due to large fires can affect radiative power detection by 

satellites [41]. Permit records are reported when land managers plan to execute prescribed 

burns and may not reflect the actual day a burn was accomplished. The burned area in permit 

records is estimated by land managers. To evaluate the disparity between FINN and permit 

estimates, we first removed agricultural burns from both datasets using an agricultural 

identification algorithm. Then, we applied a wildfire detection algorithm to remove any 

wildfires detected by FINN. Finally, we compared the prescribed burning burned area in 

permits and FINN using three types of matching: statewide, fire-to-fire, and grid-based.

3.2.1. Statewide Matching—For statewide matching, we calculate the daily total 

burned area in each state as reported in the permits and calculated by FINN. The statewide 

daily total burned area reflects the temporal pattern of prescribed burns in selected states. 

The spatial distribution is not compared.

3.2.2. Fire-to-Fire Matching—Fire-to-fire matching has the highest spatial resolution 

and is essential for event-based air quality modeling. We first match the FINN and permit 

records which have the nearest distance to each other (Algorithm S2). The matching 

algorithm is based on distance alone, leading to potential problems since the burn date of the 

permits can be different from the actual burn date. It is also possible that the closest pair of 

FINN and permit records may not be a match, as there is uncertainty in FINN and permit 

record location. Therefore, we implement an algorithm that can relax the date or distance 

requirements (Algorithm S3). If the difference in start date and distance between permits 

and FINN is less than specified values, the burns of FINN and the permit are considered as 
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candidates for being matched pairs. Differences in burned area are included as an additional 

metric to select the best pair among the candidate-matched pairs.

3.2.3. Grid-Based Burned Area Matching—As a third method, we generated the 

grid-based burned area by aggregating all the burns in a grid cell and found the relationship 

between FINN and permits. The method can partly solve the segmentation issues in FINN 

or the location uncertainties in FINN or permits. Meanwhile, the chemical transport model 

computes air quality at a grid-based resolution, so utilizing grid-based burned areas to 

generate grid-based emissions would not have significant impacts on the results of the air 

quality model. Here, we use a 4 km grid definition to generate grid-based, burned area fields. 

We conduct a sampling method that uses the averaged value of 3 by 3 grids to represent 

the center value of the 3 by 3 grids to address the potential for fires to occur near the grid 

boundaries.

4. Results

4.1. Burn-Type Differentiation

4.1.1. Agricultural Burning Identification—We used Florida’s burn type data to 

evaluate the performance of the agricultural burning identification algorithm. There were 

95,364 records in Florida permits labeled as agricultural burns, 65.35% of which were also 

identified as agricultural burns by the algorithm. On the other hand, 70,157 permit records 

were labeled as agricultural burns by the algorithm, of which 88.83% were validated by the 

burn type in permit records. The results showed that there was good agreement between 

information obtained from permits and the detection offered by the algorithm. Meanwhile, 

the algorithm underestimated the number of agricultural burns in Florida.

4.1.2. Wildfire Detection—The wildfire algorithm needs two parameters: a spatial 

clustering distance and a temporal clustering distance for aggregating FINN fires. We tuned 

these two parameters separately and analyzed the spatial and temporal relationships in FINN 

data (Figure S1). For spatial clustering, we clustered the fires observed on the same day. The 

clustering started at around 250 m, which means FINN did not have any fires within less 

than 250 m of each other. The number of clusters was increasing, and the rate of increase 

slowed down after 1200 m. This result showed that most FINN records clustered in the 

250 m to 1200 m range. For temporal clustering, we clustered the fires which occurred 

closer than a specific distance within a number of consecutive days, the duration of which 

was determined by the algorithm itself. The “elbow” (the maximum curvature, also known 

as the knee, for the temporal clustering curve in Figure S1) was around 800 m, which 

indicates that the number of clusters increased intensively when the distance threshold was 

less than 800 m. For wildfire detection, we clustered FINN fire records in space and time 

simultaneously by using our wildfire detection algorithm. Clustering parameters were tuned 

at the same time, and the elbow method [39] suggested 1000 m as the spatial clustering 

distance and 800 m as the temporal clustering distance (Figure S2). For wildfire detection 

algorithm evaluation, we used the number of matched wildfires between algorithm-detected 

wildfires and wildland fire location full history (WFIGS [42]) records in the United States 

from 2014 to 2020. As a matching method, we relaxed the distance (1500 m) and date (3 
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days) (Algorithm S3) by considering the uncertainty of the wildfire’s reported location and 

discovery date. A total of 3430 WFIGS records, whose burned area was higher than the 

minimum burned area of algorithm-detected wildfires, were selected. The algorithm detected 

22,140 wildfires based on clustering FINN fires temporally and spatially, and 665 wildfires 

were identified by both WFIGS and our algorithm.

4.1.3. Burn Types in FINN and Permits—From the burn-type differentiation 

algorithm, we differentiated agricultural burns for FINN and permits, and separated wildfires 

and prescribed burns for FINN. We estimated the number of prescribed burns and burned 

areas for each southeastern state based on FINN or permits (Figures S3, 1 and 2). In 

the southeastern United States, the primary type of burn was prescribed burn, except in 

Arkansas where agricultural burns were most prevalent. West Virginia and Virginia had the 

largest portion of wildfires among the southeastern states. Half of Florida’s permit records 

were associated with agricultural burning; however, prescribed burns accounted for a larger 

proportion of the burned area (79.40%). The percentages of the burned area from prescribed 

burning in Georgia and South Carolina were 79.00% and 88.70%, respectively.

4.2. Matching Prescribed Burning Records in FINN with Permits

We extracted prescribed burns from FINN and permits by the burn-type differentiation 

algorithm. To understand the relationship between the burned area from FINN and permits, 

we matched records at different spatial scales. Statewide matching showed a relatively 

strong correlation (R2 > 0.55) (Figures 3 and S4). Of note, the slope was higher than 1 

in Florida and was lower than 1 for South Carolina and Georgia for both linear regression 

models, indicating that FINN underestimated the prescribed burned area in Florida and 

overestimated it in Georgia and South Carolina. The positive intercept in the linear 

regression model showed that FINN underestimated burned area when the daily burned area 

was small. Additionally, the temporal pattern of prescribed burns from FINN was consistent 

with permits (Figure S5). The peaks of the burned area were around February to May for 

these three states.

Although the regression model performed well when we matched FINN and permits in a 

coarse spatial scale, FINN and permits had poor correlation when we conducted a fire-to-

fire matching with or without distance and date relaxation (Algorithms S2 and S3). For 

the nearest distance matching algorithm, we changed the selected distance threshold and 

evaluated the matching performance by R2 (Figure S6). The R2 was less than 0.05 even 

when we only considered a distance of less than 500 m between the FINN record and permit 

as a matched pair. The poor performance was partly due to uncertainty of location and start 

date for the permits, especially in Georgia, where coordinates of burns were estimated from 

ambiguous descriptions of addresses. Additionally, using distance as the single metric for 

matching had high uncertainty when there was more than one fire in FINN close to a permit 

record, and vice versa. Hence, we allowed some relaxations on the start date and included 

differences in the burned area as another metric for matching (Algorithm S3). By tuning the 

distance and start date, the matching performance was better than the previous method but 

was still poor (Figure S7). The disparity of performance between statewide matching and 

fire-to-fire matching showed the matching performance was sensitive to spatial resolution.
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The “segmentation” of fires where FINN may detect several fire points for a single 

prescribed burning event, especially for larger burns, can help to explain why the matching 

performance is sensitive to spatial resolution. The burned area detected by FINN should be 

calculated by summing all burned areas from all fire points related to a specific fire event. 

Grid-based burned area matching was considered since it can partly mitigate the issues due 

to the segmentation of FINN and the uncertainty of FINN or permit locations. Additionally, 

grid-based emissions, which are derived from the grid-based area, can still be utilized in 

chemical transport models. We aggregated point-wise FINN and permit records to a 4 km 

grid definition. Burns that were detected from both FINN and permits at the same date 

and the same grid were considered in the grid-based matching. Additionally, a sampling 

method that used an average value of 3 by 3 grids to represent the value of the center grid 

was employed to mitigate the impact of different grid definitions. The grid-based burned 

areas from FINN and permits had a similar spatial pattern in Florida, South Carolina, and 

Georgia (Figures 4 and S9). In Georgia, burns in some federal lands were missing in permit 

records since federal burners were not required to apply to Georgia Forestry Commission for 

permits; therefore, those lands were excluded from our analysis. By comparing the matched 

grid-based burned area from FINN with permits, the R2 was higher than 0.17, which was 

much better than the fire-to-fire matching (Figure 5). The slope of the linear regression 

model was less than 1, which indicated FINN overestimated the burned area of prescribed 

burns in these selected states. Additionally, a linear regression with an intercept showed a 

positive offset, which means FINN underestimated the burned area of prescribed burns for 

small fires. Since the performance differences between linear regression with or without the 

intercept were subtle, we decided to apply the slope of the linear regression model without 

the intercept (0.66 from Figure 5) as the scaling factor to adjust the southeastern burned 

area from FINN. The adjusted burned area was utilized in the BlueSky model to estimate 

prescribed burning emissions.

4.3. Prescribed Burning Emissions

FINN estimates fire emissions by burned area and emission factors for different land cover 

types [43–47]. The data are provided as point emissions, and the heights of emissions 

are estimated by different plume rise models or assumptions made in different chemical 

transport models. For example, the Community Multiscale Air Quality Modeling System 

(CMAQ) [48] uses the Briggs plume rise model [49] for point sources. WRF-Chem [50] 

uses a 1D plume rise model proposed by Freitas et al. [51] to estimate the injection height 

of emissions. The public version of the Goddard Earth Observing System-Chem (GEOS-

Chem) [52] assumes that all biomass-burning emissions are emitted into the atmospheric 

boundary layer. On the other hand, BlueSky provides different options to estimate the 

fuel type, fuel load, fuel moisture, and emission factors, which are all determinants of the 

magnitude of emissions. As for the vertical structure of emissions, BlueSky uses the plume 

rise models that it incorporates such as FEPS [36], Briggs [49], and Sofiev [53]. FEPS with 

Briggs plume top behaviors is utilized in this study to provide plume height for the three-

dimensional prescribed burning emissions. Fire activity information such as start time, end 

time, location, and burned area is required. In this study, we used the original FINN burned 

area to run BlueSky and compared the differences between emission estimation methods 

from FINN and BlueSky. We also compared prescribed burning emissions from adjusted 
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FINN burned areas and permits to understand the discrepancies between satellite-derived 

data and ground-based data, and evaluated the uncertainty associated with our estimations of 

emissions from prescribed burning.

4.3.1. Emission Comparison between FINN and BlueSky—The daily total 

emissions for the southeastern United States were compared between FINN and BlueSky. A 

linear regression without an intercept was conducted to understand the agreement between 

FINN and BlueSky emissions (Figure 6). Particulate matter and CO estimated from the 

two different methods were highly correlated (R2 = 0.96). PM2.5 and PM10 emissions from 

FINN were 74% and 96% of the respective BlueSky emissions. CO emissions from FINN 

were 16% higher than BlueSky CO emissions.

Although daily total emissions from FINN and BlueSky were consistent with each other, 

a comparison of emissions for individual fires showed discrepancies. FINN statistically 

has higher CO and particulate matter emissions from a single fire event compared to the 

BlueSky framework (Figure 7).

For regional chemical transport model simulations, typical grid-based emissions are 

provided for the model. We compared the FINN and BlueSky emissions under a 4 km 

grid definition to understand the differences in emission inputs (Figure 8). The R2 between 

estimated FINN and BlueSky emissions was higher than 0.55. FINN had higher CO and 

lower PM2.5 emissions than the BlueSky method, while PM10 emissions were close.

4.3.2. Prescribed Burning Emissions from Adjusted FINN Burned Area and 
Permits—In this study, we developed two different sets of grid-based emissions. One is 

generated using burned area from permits (Figures S10–S12), and the other is generated 

employing the adjusted FINN burned area (Figures S13–S15). The magnitude and vertical 

structure of the emissions were estimated using BlueSky.

To understand the differences in daily budgets of the emissions from permit and adjusted 

FINN burned areas, we compared the daily total emissions of prescribed burning in these 

three states (Figure 9).

We also conducted a grid-based comparison between adjusted FINN and permit emissions in 

matched grid cells (Figure 10) based on the grid-based matching algorithm. The R2 between 

the permit and adjusted FINN grid-based emissions were 0.17, 0.16, and 0.18 for CO, PM10, 

and PM2.5, respectively, which were close to the correlation for the grid-based burned area 

above (R2 = 0.17).

4.3.3. Emissions Comparison with NEI—To evaluate FINN and its adjusted version, 

we compared its emissions with those in the National Emissions Inventory (NEI) for 

2014 [54] and 2017 [55] (Figures S16–S21). Specifically, we compared emissions from 

different sectors, including agricultural burning, wildfire, and prescribed burning, using both 

NEI and FINN data processed through our burn-type differentiation algorithms. The result 

reveals that prescribed burning was the main source of emissions from wildland fires in the 

southeastern United States, with the exception of Virginia (VA) and West Virginia (WV) in 
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2014, where wildfires were dominant. Furthermore, our results show that FINN had higher 

total emissions than the NEI in most states. This is in contrast to Larkin et al. [22], who 

reported that the NEI in 2014, which included GOES and MODIS, had higher fire emissions 

than version 1.5 of FINN (MODIS only). This difference can be explained by the utilization 

of VIIRS in FINN version 2.5, which has higher spatial resolution than MODIS and can 

detect more prescribed burns. For our adjusted FINN, prescribed fire emissions were lower 

than FINN due to a 34% reduction in the burned area but they were still higher than the NEI 

in most states.

5. Discussion

Burn permits and satellite products are the main resources for fire activity information 

necessary for prescribed burning emissions estimation. Burn permits provide prescribed 

burning records but are only available in some states. Satellite products detect worldwide 

wildland fires but detecting small fires can be particularly challenging. Additionally, satellite 

products do not differentiate the burn types of fires. Some studies [20,21] assume fires 

detected by satellite products are all prescribed burnings in the southeastern United States 

because prescribed burning is more common than the other types of fires. The method for 

burn-type differentiation is still essential for prescribed burning emissions estimation from 

satellite products since wildfires and prescribed burning have different fire behaviors and 

emission patterns [7]. Prescribed burning emissions estimation also relies on the burned 

area and emission factors. So, we derived an adjustment factor for the FINN burned area 

and evaluated the uncertainty of the emissions across different frameworks (FINN-provided 

emissions and BlueSky).

5.1. Burn-Type Differentiation

When evaluating the efficiency of our algorithm for detecting agricultural burns, the 

disparity between permit-provided and NLCD-based burn types can be explained by the 

uncertainties in NLCD data and the location and burn area of permit data. Although NLCD 

updates the land cover data every three years, there is still a two-year gap between each 

update. The changes in Florida’s cropland percentage and spatial extent are relatively large, 

as indicated by Auch et al. [56]. Meanwhile, NLCD, which is derived from multiple satellite 

imageries, has uncertainties in land type classifications. Wickham et al. [57] evaluated the 

uncertainty of NLCD 2016 and reported an 86.4% and 90.6% overall accuracy for level 

II and level I data, respectively. For reported permit data, the land cover type may not 

be accurate if the recorded location is not accurate. Additionally, the square burned area 

assumed in the algorithm could include other land types than the actual burned area, which 

would change the dominant land cover type for the fire.

In the wildfire detection algorithm, the disparity between the WFIGS and our algorithm can 

be explained for several reasons. First, WFIGS reports 9460 wildfires (without filtering 

out small wildfires) in the southeastern United States, which is much lower than the 

number of fires (130, 780) reported in the national statistics of wildfires provided by the 

National Interagency Fire Center [58], indicating that WFIGS is not a complete dataset for 

wildfires. Meanwhile, prescribed burns in neighboring lands conducted on consecutive days 
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can be misclassified as wildfires by the wildfire detection algorithm. Additionally, some 

wildfires are missed in FINN due to cloud cover or other obstacles, such as the tree canopy 

[59]. FINN without burn-type differentiation only matches 53.21% of wildfires in WFIGS. 

Additionally, the fires that cannot be retrieved by FINN may affect the estimation of fire 

duration, leading to misclassification. For example, a three-day wildfire detected on the first 

and last days will be falsely classified as two separate prescribed burns.

5.2. Matching Prescribed Burning Records in FINN with Permits

The correlations between FINN burned area estimates and permit estimates vary under 

different spatial resolutions. They can be partly explained by the spatial segmentation of 

FINN. Although FINN clusters FRP from VIIRS and MODIS, it is still challenging to 

decide whether several records which are near to each other belong to the same burning 

event. Our spatial clustering analysis shows FINN separates fires that have a distance larger 

than 300 m (Figure S1), and it is possible that the records at such close distance belong to 

the same event.

5.3. Prescribed Burning Emissions

The prescribed burning emission estimations can differ from different methods (FINN 

or BlueSky) or fire activity data sources (adjusted FINN or permits). Prescribed burning 

emissions estimated by FINN or BlueSky have a high correlation for southeastern daily total 

emissions and a low correlation when making a fire event comparison. This result indicates 

that evaluating specific prescribed burning impacts on air quality would yield different 

results when the FINN or BlueSky method is employed. In this study, we used BlueSky 

to provide the prescribed burning emissions for the southeastern United States since the 

estimation of prescribed burning emissions in the CONUS (contiguous United States) from 

BlueSky differs from FINN in several ways. Firstly, BlueSky uses FCCS, which includes 

more detailed fuel types than FINN. Additionally, BlueSky separates wildfire and prescribed 

burning for emission calculation and integrates emission factors from laboratory or field 

studies concentrated in the United States [35], while FINN concentrates on global emission 

estimation and does not treat wildfire and prescribed burning differently. Moreover, BlueSky 

estimates fuel moisture, fuel consumption, and plume height by considering meteorological 

conditions. This information affects the magnitude and vertical structure of emissions. 

Meanwhile, FINN does not need meteorological conditions for emission estimation.

Prescribed burning emission comparisons between adjusted FINN and permits show a 

similar correlation as burned area comparisons, which indicates that burned area estimation 

is important in prescribed burning emission estimations. For daily total emissions, adjusted 

FINN emissions are close to permit-based emissions in Georgia and South Carolina after 

applying the adjustment factor for the burned area. On the other hand, permit emissions are 

about 80% higher than adjusted FINN emissions in Florida. The reason for the low adjusted 

FINN emissions in Florida is that we developed the scaling factor to reduce FINN burned 

area based on all three states (Figure 3). A burned area comparison for Florida indicates a 

scaling factor to increase the burned area, which is a different pattern among these three 

states. For grid-based emission comparisons, the slope of the linear regression without the 

intercept is close to one since we adjusted burned area before BlueSky modeling. Without 
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the burned area adjustment, the same slope was only 0.6 (Figure S24). This indicates 

that the FINN burned area adjustment mitigates the difference between FINN-based and 

permit-based emissions. This also implies that the adjustment factor derived from the slope 

of linear regression is robust, even though the R2 of the linear regression between permit and 

FINN burned areas was low.

6. Conclusions

Wildland fires identified from the satellite-derived product FINN have been segregated into 

different burn types (prescribed, agricultural burns, or wildfires) by considering the land 

cover type of fire locations and fire durations. The burned area of prescribed burns using 

FINN-based wildland fire estimates is compared with the burned area of prescribed burning 

permits in Georgia, Florida, and South Carolina. Matching and comparisons between the 

burned area from FINN and permits are conducted at various resolutions. FINN burned 

area estimates have a low correlation (R2 < 0.05) with permit estimates based on fire-to-

fire matching, while the correlation is relatively stronger for grid-based (R2 > 0.17) and 

statewide (R2 > 0.55) matching. A linear regression model, developed using grid-based 

matching results, determined that the prescribed burned area from FINN needs to be reduced 

by 34% of the FINN burned area. Using the BlueSky framework with the adjusted burned 

area, prescribed burning emissions are estimated for the southeastern United States from 

2013 to 2020. To understand the emission differences between FINN and BlueSky, we 

also ran BlueSky with unadjusted FINN burned areas. The comparisons between emissions 

from FINN and BlueSky indicate that the differences in emissions can be large for single 

fire events (R2 > 0.38), but much smaller when considering emission estimates at a 4 km 

grid resolution (R2 > 0.55), or when assessing statewide emissions (R2 > 0.96). We also 

compare emissions estimated from permit burn areas and the adjusted FINN burned area 

using BlueSky to understand the uncertainty of prescribed burning emissions stemming from 

the potential use of different data sources. The linear regression model between adjusted 

FINN and permit emissions has a slope of around 0.94 with R2 = 0.17. The result of this 

comparison indicates that the magnitude of emissions from the adjusted FINN burned area 

at a 4 km grid resolution agrees with those derived from permit burn areas. The methods we 

presented here are readily useable for burn-type differentiation, matching and comparison of 

the burned area between two datasets under various resolutions, and estimation of prescribed 

burning emissions. This study also benefits health studies related to prescribed burning 

since type-differentiated and more accurately estimated prescribed burning emissions from 

satellite products are needed to model the air quality impacts of prescribed fires. Those air 

quality impacts are essential to smoke exposure evaluation, which can be used for public 

health research and surveillance. The emissions data we produced can be readily used for 

air quality simulations and investigations of the health impacts of prescribed burning in the 

southeastern United States between 2013 and 2020.

To improve the algorithms and emission products in this study, two main efforts should 

be considered. Firstly, the state-level burn permit data systems should be unified since it 

is difficult to obtain data from each state and the data formats vary from one state to 

another. Burn information in unified permit databases can be grouped into three categories 

by decreased level of importance. The first group should include latitude, longitude, start 
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date, and burn area, which are the minimum requirements for most fire emission models. 

This information should be collected when fire managers apply for permits. Updates of 

burn area data after the burn with the actual burned areas can improve the understanding 

of the relationships between satellite-derived and ground-based data. The second group may 

include the start time, end time, and burn type, which can be recorded by the fire managers 

when they execute the burnings. Start and end times are valuable for generating diurnal 

time profiles of emissions in chemical transport models. Burn-type information is important 

for training and evaluating burn-type differentiation algorithms. The third level may include 

the boundaries of the burned areas, which would be valuable for improving and evaluating 

clustering algorithms in current fire emission products that combine FRP data from different 

satellites, such as FINN. Secondly, the burn-type differentiation algorithm can be improved 

by using statistical models or supervised machine learning models when sufficient reliable 

wildfire data and prescribed burning permit data are available. The occurrence probability 

of prescribed burns or wildfires could be related to meteorological conditions or locations, 

which can be utilized for training data-driven models. Furthermore, the algorithms and 

frameworks in this study can be applied for agricultural burning and wildfire emissions 

estimation using corresponding emission factors.
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Figure 1. 
Percentages of the burned area from FINN for different burn types in southeastern states 

from FINN, 2013–2020. (State abbreviations: AL: Alabama; AR: Arkansas; GA: Georgia; 

FL: Florida; KY: Kentucky; LA: Louisiana; MS: Mississippi; NC: North Carolina; SC: 

South Carolina; TN: Tennessee; VA: Virginia; WV: West Virginia).
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Figure 2. 
Percentages of the burned area and number of records from permits for different burn 

types in southeastern states. Georgia permits cover 2015–2020. Florida and South Carolina 

permits cover 2013–2020. (State abbreviations: GA: Georgia; FL: Florida; SC: South 

Carolina).
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Figure 3. 
Statewide matching between FINN and permits in Florida, South Carolina, and Georgia. A 

linear regression with an intercept was conducted to fit the FINN burned area and permits 

burned area. The numbers of matching days were indicated as N values. Uncertainty of 

linear regression parameters was reported with a 95% confidence interval. Florida and South 

Carolina permits cover 2013–2020. Georgia permits cover 2015–2020. (State abbreviations: 

GA: Georgia; FL: Florida; SC: South Carolina).
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Figure 4. 
The total grid-based burned area from FINN and permit. FINN covered prescribed burns 

from 2013 to 2020. Georgia permits included records from 2015 to 2020. South Carolina 

and Florida permits included records from 2013 to 2020. Federal land boundaries are shown 

in blue. (State abbreviations: GA: Georgia; FL: Florida; SC: South Carolina).
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Figure 5. 
A linear regression between the FINN burned area and permitted burn area (unit: acres) of 

prescribed burns matched over 4 km grid cells in Florida, Georgia, and South Carolina. The 

black line is a 1:1 line and the red line is the regression line. Uncertainty of linear regression 

parameters was reported with a 95% confidence interval.
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Figure 6. 
A comparison between estimated FINN and BlueSky daily total prescribed burning 

emissions in the southeastern United States. The black line is a 1:1 line and the red line 

is the regression line. Uncertainty of the linear regression parameters was reported with a 

95% confidence interval.
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Figure 7. 
A comparison between estimated FINN and BlueSky prescribed burning emissions for 

each record in FINN. The black line is a 1:1 line and the red line is the regression line. 

Uncertainty of the linear regression parameters was reported with a 95% confidence interval.
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Figure 8. 
A statewide comparison between estimated FINN and BlueSky prescribed burning 

emissions under 4 km grid definition. The black line is a 1:1 line and the red line is the 

regression line. Uncertainty of the linear regression parameters was reported with a 95% 

confidence interval.
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Figure 9. 
A comparison between permit and adjusted FINN daily total prescribed burning emissions 

in Florida, South Carolina, and Georgia. The black line is a 1:1 line and the red line is 

the regression line. Uncertainty of the linear regression parameters is reported with a 95% 

confidence interval.
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Figure 10. 
A comparison between permit and adjusted FINN-prescribed burning emissions in matched 

grid cells under a 4 km grid definition. The black line is a 1:1 line and the red line is the 

regression line. Uncertainty of the linear regression parameters was reported with a 95% 

confidence interval.
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